Subgroup ($H$) information
Description: | $C_2\times C_7^3:C_6$ |
Order: | \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \) |
Index: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Generators: |
$b^{3}, g^{2}, d^{2}f^{6}g^{4}, e^{6}f^{4}g^{6}, cf^{7}g^{7}, f^{2}g^{12}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.
Ambient group ($G$) information
Description: | $D_7^3.C_6^2:D_6$ |
Order: | \(1185408\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7^{3} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $(C_2\times C_6):S_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $(C_2^3\times C_6).S_3^3$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Outer Automorphisms: | $S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.C_2^4:\He_3.C_6.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_2\times C_7^3.C_6.\PSL(3,7).C_3$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Möbius function | not computed |
Projective image | not computed |