Properties

Label 1185408.a.1.a1.a1
Order $ 2^{7} \cdot 3^{3} \cdot 7^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7^3.C_6^2:D_6$
Order: \(1185408\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7^{3} \)
Index: $1$
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $e^{21}f^{7}g^{7}, ad^{4}e^{39}fg^{11}, b^{3}, f^{2}g^{12}, c, b^{2}cd^{4}e^{9}f^{5}g^{4}, d^{3}e^{27}f^{7}g^{5}, g^{7}, d^{2}e^{18}f^{12}g^{2}, f^{7}, e^{14}f^{4}g^{10}, e^{6}f^{10}g^{8}, g^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and solvable. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $D_7^3.C_6^2:D_6$
Order: \(1185408\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_2^4:\He_3.C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_7^3.C_2^4:\He_3.C_6.C_2^4$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed