Subgroup ($H$) information
Description: | $C_{199}:C_{66}$ |
Order: | \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \) |
Generators: |
$a^{99}, b^{199}, b^{3}, a^{18}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).
Ambient group ($G$) information
Description: | $C_3\times F_{199}$ |
Order: | \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \) |
Exponent: | \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
Description: | $C_9$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{199}:(C_{11}:(C_{18}\times S_3))$ |
$\operatorname{Aut}(H)$ | $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \) |
$W$ | $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \) |
Related subgroups
Other information
Möbius function | $0$ |
Projective image | $F_{199}$ |