Properties

Label 118206.b.13134.b1.b1
Order $ 3^{2} $
Index $ 2 \cdot 3 \cdot 11 \cdot 199 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a^{110}b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_3\times F_{199}$
Order: \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{198}$
Normalizer:$C_3\times C_{198}$
Normal closure:$C_{199}:C_9$
Core:$C_1$
Minimal over-subgroups:$C_{199}:C_9$$C_{99}$$C_3\times C_9$$C_{18}$
Maximal under-subgroups:$C_3$
Autjugate subgroups:118206.b.13134.b1.a1118206.b.13134.b1.c1

Other information

Number of subgroups in this conjugacy class$199$
Möbius function$1$
Projective image$C_3\times F_{199}$