Properties

Label 118206.b.66.b1.b1
Order $ 3^{2} \cdot 199 $
Index $ 2 \cdot 3 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{199}:C_9$
Order: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Generators: $a^{110}b^{2}, a^{132}b^{204}, b^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_3\times F_{199}$
Order: \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{66}$
Order: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Automorphism Group: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
$W$$F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times F_{199}$
Complements:$C_{66}$ $C_{66}$ $C_{66}$
Minimal over-subgroups:$C_{199}:C_{99}$$C_{597}:C_9$$C_{199}:C_{18}$
Maximal under-subgroups:$C_{199}:C_3$$C_9$
Autjugate subgroups:118206.b.66.b1.a1118206.b.66.b1.c1

Other information

Möbius function$-1$
Projective image$C_3\times F_{199}$