Properties

Label 118206.b.198.a1.a1
Order $ 3 \cdot 199 $
Index $ 2 \cdot 3^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{597}$
Order: \(597\)\(\medspace = 3 \cdot 199 \)
Index: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(597\)\(\medspace = 3 \cdot 199 \)
Generators: $b^{199}, b^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, and cyclic (hence abelian, elementary ($p = 3,199$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3\times F_{199}$
Order: \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{198}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Automorphism Group: $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $C_2\times C_{198}$, of order \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
$W$$C_{198}$, of order \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_{597}$
Normalizer:$C_3\times F_{199}$
Complements:$C_{198}$ $C_{198}$ $C_{198}$
Minimal over-subgroups:$C_{199}:C_{33}$$C_{597}:C_3$$C_3\times D_{199}$
Maximal under-subgroups:$C_{199}$$C_3$

Other information

Möbius function$0$
Projective image$F_{199}$