Subgroup ($H$) information
Description: | $C_{590}$ |
Order: | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
Index: | \(2\) |
Exponent: | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
Generators: |
$b^{295}, b^{472}, b^{10}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, maximal, a semidirect factor, and cyclic (hence abelian, elementary ($p = 2,5,59$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
Description: | $D_{590}$ |
Order: | \(1180\)\(\medspace = 2^{2} \cdot 5 \cdot 59 \) |
Exponent: | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{59}:(C_2\times C_{58}\times F_5)$ |
$\operatorname{Aut}(H)$ | $C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{116}$, of order \(232\)\(\medspace = 2^{3} \cdot 29 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(590\)\(\medspace = 2 \cdot 5 \cdot 59 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{590}$ | ||
Normalizer: | $D_{590}$ | ||
Complements: | $C_2$ $C_2$ | ||
Minimal over-subgroups: | $D_{590}$ | ||
Maximal under-subgroups: | $C_{295}$ | $C_{118}$ | $C_{10}$ |
Other information
Möbius function | $-1$ |
Projective image | $D_{295}$ |