Subgroup ($H$) information
| Description: | $C_{21}:D_4$ |
| Order: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Index: | \(7\) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Generators: |
$a^{3}, a^{2}, b^{14}, b^{7}, c$
|
| Derived length: | $2$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
| Description: | $(C_7\times D_{14}):C_6$ |
| Order: | \(1176\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \) |
| Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^2.C_6^2.C_2^2$ |
| $\operatorname{Aut}(H)$ | $C_2^3\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
| $W$ | $D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $7$ |
| Möbius function | $-1$ |
| Projective image | $D_7\times F_7$ |