Properties

Label 11757312.o.2187.A
Order $ 2^{8} \cdot 3 \cdot 7 $
Index $ 3^{7} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:\GL(3,2)$
Order: \(5376\)\(\medspace = 2^{8} \cdot 3 \cdot 7 \)
Index: \(2187\)\(\medspace = 3^{7} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(22,23), (5,20)(8,14)(11,18)(12,19)(22,23), (1,16)(2,12,10,19)(5,6,20,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_3^7.C_2^5.\PSL(2,7)$
Order: \(11757312\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^7.C_2^5.\PSL(2,7)$, of order \(11757312\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^4.\PSL(2,7)\times S_3$
$W$$C_2^3:\GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^5:\GL(3,2)$
Normal closure:$C_3^7.C_2^5.\PSL(2,7)$
Core:$C_2$

Other information

Number of subgroups in this autjugacy class$2187$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^7.C_2^4:\GL(3,2)$