Properties

Label 11664.lh.972.b1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 3^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{2}cd^{4}e^{2}, d^{3}e^{9}, e^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(A_4\times C_3^3).S_3^2$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^3.S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3^3:(C_3\times C_6)$
Normalizer:$(A_4\times C_3^3).S_3^2$
Complements:$C_3^3.S_3^2$ $C_3^3.S_3^2$ $C_3^3.S_3^2$
Minimal over-subgroups:$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_3\times A_4$$C_2\times A_4$$S_4$$S_4$
Maximal under-subgroups:$C_2^2$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(A_4\times C_3^3).S_3^2$