Properties

Label 11664.lh.324.dl1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times A_4$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{2}cd^{2}e^{8}, b^{2}cd^{4}e^{2}, d^{3}e^{9}, e^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(A_4\times C_3^3).S_3^2$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$S_3\times C_3^2$
Normalizer:$S_3\times C_3^2\times A_4$
Normal closure:$C_6^2:C_3^3$
Core:$A_4$
Minimal over-subgroups:$C_3^2\times A_4$$C_3^2\times A_4$$C_3^2\times A_4$$C_6\times A_4$
Maximal under-subgroups:$A_4$$C_2\times C_6$$A_4$$C_3^2$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(A_4\times C_3^3).S_3^2$