Properties

Label 11664.jb.36.bp1
Order $ 2^{2} \cdot 3^{4} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:S_3^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,14)(12,13), (1,7,3)(2,4,9)(5,6,8)(10,13,12)(11,15,14), (1,9,5)(2,6,7)(3,4,8), (2,6,7)(3,8,4), (10,12,13)(11,14,15), (2,8)(3,6)(4,7)(10,13)(14,15)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5:(S_3\times D_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\wr S_3\times D_6$
Normal closure:$C_3^3:S_3^2$
Core:$C_3^2:S_3$
Minimal over-subgroups:$C_3^3:S_3^2$$C_3^3:S_3^2$$S_3\times C_3^2:D_6$
Maximal under-subgroups:$C_3^3:S_3$$S_3\times \He_3$$C_3^3:S_3$$C_3\times S_3^2$$C_3\times S_3^2$$C_3^2:D_6$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^4:(C_6\times D_4)$