Properties

Label 11664.jb.12.c1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3:S_3^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,6,7)(3,8,4)(11,15,14), (1,7,3)(2,4,9)(5,6,8)(10,13,12)(11,15,14), (1,9,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5:(S_3\times D_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $\AGL(2,3)^2$
$W$$C_3^4:(C_6\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3^5:(S_3\times D_4)$
Minimal over-subgroups:$C_3^5:D_6$$C_3^2:S_3^3$$C_3^4:(C_4\times S_3)$
Maximal under-subgroups:$C_3^4:S_3$$C_3^4:C_6$$C_3^4:S_3$$C_3^2:S_3^2$$C_3^2:S_3^2$$C_3^2:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$C_3^4:(C_6\times D_4)$