Subgroup ($H$) information
| Description: | $C_3^3:S_3^2$ |
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(2,6,7)(3,8,4)(11,15,14), (1,7,3)(2,4,9)(5,6,8)(10,13,12)(11,15,14), (1,9,5) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is characteristic (hence normal), nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^5:(S_3\times D_4)$ |
| Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times C_6$ |
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Outer Automorphisms: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3\times C_3^4.C_{12}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $\AGL(2,3)^2$ |
| $W$ | $C_3^4:(C_6\times D_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-2$ |
| Projective image | $C_3^4:(C_6\times D_4)$ |