Properties

Label 11664.jb.18.p1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:D_4$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,11)(12,14,13,15), (1,9,5)(2,6,7)(3,4,8), (12,13)(14,15), (10,12,13)(11,14,15), (1,7,4)(2,8,9)(3,5,6)(10,13,12)(11,14,15), (14,15), (11,15,14)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^5:(S_3\times D_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $\PSU(3,2):C_2\times \GL(2,3)$
$W$$S_3^3:C_2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^4:(S_3\times D_4)$
Normal closure:$\He_3\times \SOPlus(4,2)$
Core:$S_3^2:C_6$
Minimal over-subgroups:$\He_3\times \SOPlus(4,2)$$S_3^3:C_6$
Maximal under-subgroups:$C_3^2\times S_3^2$$C_3^3:C_{12}$$S_3^2:C_6$$S_3^2:C_6$$D_4\times C_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^4:(C_6\times D_4)$