Properties

Label 11664.jb.162.p1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2 \cdot 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times C_3^2$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(162\)\(\medspace = 2 \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7,4)(2,8,9)(3,5,6), (10,11)(12,14,13,15), (1,9,5)(2,6,7)(3,4,8), (12,13)(14,15), (14,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_3^5:(S_3\times D_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_3^4.C_{12}.C_2^4$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,3)$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_6^2:D_6$
Normal closure:$\He_3\times \SOPlus(4,2)$
Core:$C_3$
Minimal over-subgroups:$C_3^4:D_4$$D_4\times \He_3$$C_{12}:D_6$
Maximal under-subgroups:$C_6^2$$C_3\times C_{12}$$C_3\times D_4$$C_3\times D_4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^4:(C_6\times D_4)$