Properties

Label 11664.hr.24.c1
Order $ 2 \cdot 3^{5} $
Index $ 2^{3} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4:C_6$
Order: \(486\)\(\medspace = 2 \cdot 3^{5} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(4,16,18)(8,15,11), (1,18,11)(2,9,3)(4,15,7)(5,16,8)(6,14,17)(10,13,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2\times \He_3^2:D_4$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.C_3^4.D_4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^5.(S_3\times C_3^2:\GL(2,3))$, of order \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \)
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$\He_3^2:C_2^3$
Normal closure:$C_2\times \He_3^2$
Core:$C_3^3\times C_6$
Minimal over-subgroups:$C_2\times \He_3^2$$C_3^3.C_6^2$$C_3^4:D_6$$C_3^4:D_6$
Maximal under-subgroups:$C_3^4:C_3$$C_3^3\times C_6$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$$C_6\times \He_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\He_3^2:D_4$