Subgroup ($H$) information
| Description: | $C_3^4:C_6$ |
| Order: | \(486\)\(\medspace = 2 \cdot 3^{5} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(4,16,18)(8,15,11), (1,18,11)(2,9,3)(4,15,7)(5,16,8)(6,14,17)(10,13,12) \!\cdots\! \rangle$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_2\times \He_3^2:D_4$ |
| Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^2.C_3^4.D_4.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_3^5.(S_3\times C_3^2:\GL(2,3))$, of order \(629856\)\(\medspace = 2^{5} \cdot 3^{9} \) |
| $W$ | $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $4$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | $0$ |
| Projective image | $\He_3^2:D_4$ |