Properties

Label 11664.fz.3.d1
Order $ 2^{4} \cdot 3^{5} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.(C_6\times S_4)$
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(3\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ac^{2}e^{5}f^{4}, f^{3}, e^{2}f^{4}, f^{2}, d^{9}, bc^{2}d^{2}e^{3}f^{3}, e^{3}, d^{6}, cd^{6}e^{2}f^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
$W$$C_3^3.(C_6\times S_4)$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^3.(C_6\times S_4)$
Normal closure:$C_3^5:(C_2\times S_4)$
Core:$C_3^3.(C_6\times A_4)$
Minimal over-subgroups:$C_3^5:(C_2\times S_4)$
Maximal under-subgroups:$C_3^3.(C_6\times A_4)$$C_3^4.S_4$$C_3^4.S_4$$C_6^2.S_3^2$$C_6^2:S_3^2$$C_6^2:D_{18}$$C_3^3.S_3^2$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$C_3^5:(C_2\times S_4)$