Properties

Label 11547360.a.1.a1
Order $ 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5.(S_3\times M_{11})$
Order: \(11547360\)\(\medspace = 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 \)
Index: $1$
Exponent: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Generators: $\langle(1,3,2)(7,9,8)(10,12,11)(13,15,14)(19,20,21)(22,23,24)(25,26,27)(28,30,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and nonsolvable. Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_3^5.(S_3\times M_{11})$
Order: \(11547360\)\(\medspace = 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 \)
Exponent: \(3960\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.(S_3\times M_{11})$, of order \(11547360\)\(\medspace = 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_3^5.(S_3\times M_{11})$, of order \(11547360\)\(\medspace = 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 \)
$W$$C_3^5.(S_3\times M_{11})$, of order \(11547360\)\(\medspace = 2^{5} \cdot 3^{8} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^5.(S_3\times M_{11})$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5.(S_3\times M_{11})$