Properties

Label 115248.bg.4802.a1.a1
Order $ 2^{3} \cdot 3 $
Index $ 2 \cdot 7^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(4802\)\(\medspace = 2 \cdot 7^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{3}d^{12}e^{6}f^{5}, b^{2}c^{7}d^{7}e^{5}f^{3}, c^{7}d^{11}ef, d^{7}ef$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times S_4$
Normal closure:$C_7^3:A_4\times D_7$
Core:$C_1$
Minimal over-subgroups:$C_2\times C_7^3:A_4$$A_4\times D_7$$C_2\times S_4$
Maximal under-subgroups:$A_4$$C_2^3$$C_6$

Other information

Number of subgroups in this conjugacy class$2401$
Möbius function$-1$
Projective image$D_7\times C_7^3:S_4$