Properties

Label 115248.bg.4.a1.a1
Order $ 2^{2} \cdot 3 \cdot 7^{4} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7\wr A_4$
Order: \(28812\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $b^{2}c^{7}d^{7}e^{5}f^{3}, e, c^{7}d^{4}, d^{7}ef, c^{2}f^{6}, f, d^{2}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_4\times S_3\times S_5$, of order \(296352\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7^{3} \)
$W$$C_2\times C_7^3:S_4$, of order \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_7$
Normalizer:$D_7\times C_7^3:S_4$
Complements:$C_2^2$ $C_2^2$
Minimal over-subgroups:$C_7^3:A_4\times D_7$$C_7\wr S_4$$C_7^4:S_4$
Maximal under-subgroups:$C_7\wr C_2^2$$C_7^3:C_{21}$$C_7^3:A_4$$C_7\times A_4$

Other information

Möbius function$2$
Projective image$D_7\times C_7^3:S_4$