Properties

Label 115248.bg.14406.a1.a1
Order $ 2^{3} $
Index $ 2 \cdot 3 \cdot 7^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(14406\)\(\medspace = 2 \cdot 3 \cdot 7^{4} \)
Exponent: \(2\)
Generators: $ac^{12}d^{12}e, b^{3}d^{12}e^{6}f^{5}, c^{7}d^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{14}$
Normalizer:$C_{14}:D_4$
Normal closure:$D_7\times C_7^3:S_4$
Core:$C_1$
Minimal over-subgroups:$C_2^2\times C_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this conjugacy class$1029$
Möbius function$0$
Projective image$D_7\times C_7^3:S_4$