Subgroup ($H$) information
Description: | $C_7\times C_{14}$ |
Order: | \(98\)\(\medspace = 2 \cdot 7^{2} \) |
Index: | \(1176\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{2} \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$ab^{3}c^{2}d^{10}f^{3}, c^{2}f^{6}, d^{4}e^{5}f$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 7$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $D_7\times C_7^3:S_4$ |
Order: | \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7^3.(C_7\times A_4).C_6^2.C_2$ |
$\operatorname{Aut}(H)$ | $\GL(2,7)$, of order \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $84$ |
Möbius function | $0$ |
Projective image | $D_7\times C_7^3:S_4$ |