Properties

Label 115200.d.8.B
Order $ 2^{6} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5^2:C_2^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,6,8,5,7)(2,3,10,4,9)(11,13)(12,14), (3,9)(5,8), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5^2:C_2^2$, of order \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
$W$$S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_5^2:D_4$
Minimal over-subgroups:$A_5^2:C_2^3$$C_2\times S_5^2$$A_5^2:C_2^3$$A_5^2:(C_2\times C_4)$$C_2\times A_5^2:C_4$
Maximal under-subgroups:$C_2\times A_5^2$$\PSOPlus(4,5)$$C_2\times A_4:S_5$$D_{10}.S_5$$D_6\times S_5$$C_2\times S_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$