Subgroup ($H$) information
| Description: | $\PSOPlus(4,5)$ |
| Order: | \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
| Index: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(1,6,8,5,7)(2,3,10,4,9), (3,9)(5,8)\rangle$
|
| Derived length: | $1$ |
The subgroup is normal, nonabelian, nonsolvable, and rational.
Ambient group ($G$) information
| Description: | $S_5^2:D_4$ |
| Order: | \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
| Description: | $C_2\times D_4$ |
| Order: | \(16\)\(\medspace = 2^{4} \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Automorphism Group: | $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \) |
| Outer Automorphisms: | $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \) |
| Derived length: | $2$ |
The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
| $W$ | $S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
| Centralizer: | $C_2^2$ | |||||
| Normalizer: | $S_5^2:D_4$ | |||||
| Minimal over-subgroups: | $A_5^2:C_2^2$ | $S_5^2$ | $A_5^2:C_2^2$ | $S_5^2$ | $\POPlus(4,5)$ | $A_5^2:C_4$ |
| Maximal under-subgroups: | $A_5^2$ | $A_4:S_5$ | $A_5:F_5$ | $S_3\times S_5$ |
Other information
| Number of subgroups in this autjugacy class | $2$ |
| Number of conjugacy classes in this autjugacy class | $2$ |
| Möbius function | not computed |
| Projective image | $S_5^2:D_4$ |