Properties

Label 115200.d.60.L
Order $ 2^{7} \cdot 3 \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_4\times S_5$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,5)(7,8)(11,13)(12,14), (1,7,8,5)(2,4)(3,10,9)(11,12)(13,14), (4,10), (1,7)(5,8)(11,13)(12,14), (5,7)(11,12)(13,14), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2^5.C_2^3.S_5$
$W$$C_2^2\times S_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^2\times D_4\times S_5$
Normal closure:$C_2^2\times S_5^2$
Core:$C_2$
Minimal over-subgroups:$C_2\times S_4\times S_5$$C_2^2\times D_4\times S_5$
Maximal under-subgroups:$C_2^3:S_5$$C_2\times D_4\times A_5$$C_2\times C_4\times S_5$$C_2^3\times S_5$$C_2^3\times S_5$$C_2\times C_4:S_5$$C_2^3:S_5$$D_4\times S_5$$D_4\times S_5$$\GL(2,\mathbb{Z}/4):C_2^2$$D_{10}.C_2^4$$C_{12}:C_2^4$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$S_5^2:C_2^2$