Properties

Label 115200.d.2.A
Order $ 2^{8} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times S_5^2$
Order: \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(11,14)(12,13), (11,12)(13,14), (1,6)(4,10)(11,13)(12,14), (1,5,7)(2,10,4,3,9)(6,8)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $S_5^2:D_4$
Order: \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $A_5^2.C_2\wr D_6$, of order \(2764800\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5^{2} \)
$W$$S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_5^2:D_4$
Complements:$C_2$
Minimal over-subgroups:$S_5^2:D_4$
Maximal under-subgroups:$A_5^2:C_2^3$$C_2\times S_5^2$$A_5^2:C_2^3$$C_2\times S_5^2$$C_2\times S_5^2$$C_2^2\times S_4\times S_5$$C_2^2\times F_5\times S_5$$\GL(2,4):C_2^5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$S_5^2:C_2^2$