Subgroup ($H$) information
| Description: | $C_2^2\times S_5^2$ |
| Order: | \(57600\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \) |
| Index: | \(2\) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(11,14)(12,13), (11,12)(13,14), (1,6)(4,10)(11,13)(12,14), (1,5,7)(2,10,4,3,9)(6,8)(11,13)(12,14)\rangle$
|
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, nonsolvable, and rational.
Ambient group ($G$) information
| Description: | $S_5^2:D_4$ |
| Order: | \(115200\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times A_5^2).D_4^2$, of order \(460800\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5^{2} \) |
| $\operatorname{Aut}(H)$ | $A_5^2.C_2\wr D_6$, of order \(2764800\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 5^{2} \) |
| $W$ | $S_5\wr C_2$, of order \(28800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $S_5^2:C_2^2$ |