Properties

Label 11520.ec.90.k1
Order $ 2^{7} $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5\times C_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(10,14,11,15), (2,5)(3,4)(6,7)(8,9)(10,14,11,15)(12,13), (2,3)(4,5)(10,14,11,15)(12,13), (8,9), (10,11)(14,15), (6,7)(8,9), (8,9)(12,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2^5:C_6\times A_5$
Order: \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times C_2\wr C_2^2\times S_4$
$\operatorname{Aut}(H)$ $C_2^6.C_2^5.\GL(5,2)$, of order \(20478689280\)\(\medspace = 2^{21} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$W$$C_3\times C_6$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^5\times C_4$
Normalizer:$C_2^6:C_6^2$
Normal closure:$C_4\times C_2^3\times A_5$
Core:$C_2^3\times C_4$
Minimal over-subgroups:$C_2^5:C_{12}$$C_2^5:C_{12}$$C_2^5:C_{12}$$D_4\times C_2^5$
Maximal under-subgroups:$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^6$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$$C_2^4\times C_4$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^4:\GL(2,4)$