Subgroup ($H$) information
| Description: | $C_2^3\times C_4$ |
| Order: | \(32\)\(\medspace = 2^{5} \) |
| Index: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(4\)\(\medspace = 2^{2} \) |
| Generators: |
$\langle(10,14,11,15)(12,13), (10,11)(14,15), (2,5)(3,4)(6,7)(8,9)(10,11)(12,13)(14,15), (6,7)(8,9), (2,3)(4,5)(8,9)(10,14,11,15)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Ambient group ($G$) information
| Description: | $C_2^5:C_6\times A_5$ |
| Order: | \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_5\times C_2\wr C_2^2\times S_4$ |
| $\operatorname{Aut}(H)$ | $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $180$ |
| Number of conjugacy classes in this autjugacy class | $4$ |
| Möbius function | not computed |
| Projective image | $C_2^5:\GL(2,4)$ |