Properties

Label 1152.32531.3.a1
Order $ 2^{7} \cdot 3 $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4^2:S_3$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, cd^{6}, d^{6}, b^{3}, b^{6}, d^{4}, c^{2}, d^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{12}^2:D_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^4.C_2^5.C_2^2)$
$\operatorname{Aut}(H)$ $S_3\times C_2^3.D_4^2$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_3\times C_2^3.D_4^2$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$(C_2\times C_{12}):D_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{12}^2:D_4$
Complements:$C_3$ $C_3$
Minimal over-subgroups:$C_{12}^2:D_4$
Maximal under-subgroups:$C_2^4:D_6$$(C_2^3\times C_6):C_4$$C_3\times D_4^2$$D_{12}:D_4$$(C_4\times C_{12}):C_4$$C_2\wr D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$(C_6\times C_{12}):D_4$