Properties

Label 1152.32531.9.a1
Order $ 2^{7} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\wr D_4$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{3}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $3$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_{12}^2:D_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^4.C_2^5.C_2^2)$
$\operatorname{Aut}(H)$ $C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(S)$$C_2^6:D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_4^2:C_6$
Normal closure:$D_4^2:S_3$
Core:$D_4^2$
Minimal over-subgroups:$D_4^2:S_3$$D_4^2:C_6$
Maximal under-subgroups:$D_4^2$$C_2\wr C_2^2$$C_2\wr C_4$$D_4:D_4$$C_4^2:C_4$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$(C_6\times C_{12}):D_4$