Properties

Label 1152.157872.2.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_6):S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,8)(4,7)(5,6)(10,11), (1,5)(2,8)(3,4)(6,7), (2,6)(7,8), (2,8)(6,7), (12,14)(13,15), (1,4)(2,7)(3,5)(6,8), (9,11,10), (3,5,4)(6,8,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, a direct factor, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^3\times C_6):S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_6).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $(C_2^3\times C_6).S_3^3.C_2$
$\card{\operatorname{res}(S)}$\(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$(C_2\times C_6):S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$(C_2^3\times C_6):S_4$
Complements:$C_2$ $C_2$ $C_2$ $C_2$
Minimal over-subgroups:$(C_2^3\times C_6):S_4$
Maximal under-subgroups:$C_2^5:C_3^2$$(C_2\times C_6):S_4$$C_2^4:D_6$$C_2^3:S_4$$C_6:S_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$6$
Möbius function$-1$
Projective image$(C_2^2\times C_6):S_4$