Properties

Label 1152.157872.12.f1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4\times C_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,11,10), (1,5)(3,4), (12,13)(14,15), (2,6)(7,8), (1,4)(2,6)(3,5)(7,8), (1,4)(2,7)(3,5)(6,8)(12,14)(13,15)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $(C_2^3\times C_6):S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_6).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times \GL(5,2)$, of order \(19998720\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{res}(S)$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5\times C_6$
Normalizer:$C_2^5\times C_6$
Normal closure:$C_2^5\times C_6$
Core:$C_6$
Minimal over-subgroups:$C_2^5\times C_6$
Maximal under-subgroups:$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^3\times C_6$$C_2^5$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$(C_2^2\times C_6):S_4$