Properties

Label 1152.157508.8.b1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times A_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,7)(3,4), (1,4)(3,7), (5,8,6), (9,10,11,12), (3,4,7)(5,8,6), (9,11)(10,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_4\wr C_2\times C_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4:D_6^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{12}\times A_4$
Normal closure:$C_4\times A_4^2$
Core:$C_4$
Minimal over-subgroups:$C_4\times A_4^2$
Maximal under-subgroups:$C_6\times A_4$$C_2^2\times C_{12}$$C_4\times A_4$$C_4\times A_4$$C_4\times A_4$$C_3\times C_{12}$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image$A_4\wr C_2$