Properties

Label 1152.156208.288.a1.a1
Order $ 2^{2} $
Index $ 2^{5} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $c^{18}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $Q_8:S_3\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3:C_8\times S_4$
Normalizer:$Q_8:S_3\times S_4$
Minimal over-subgroups:$C_{12}$$C_{12}$$C_{12}$$Q_8$$C_2\times C_4$$C_2\times C_4$$D_4$$D_4$$D_4$$Q_8$$Q_8$$C_8$$C_8$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$288$
Projective image$C_2^4:S_3^2$