Properties

Label 1152.156208.1.a1.a1
Order $ 2^{7} \cdot 3^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:S_3\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: $1$
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, e^{3}, c^{12}, c^{8}, b, c^{6}, de^{3}, e^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $Q_8:S_3\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_2^5.D_6^2$, of order \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$W$$C_2^4:S_3^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$Q_8:S_3\times S_4$
Complements:$C_1$
Maximal under-subgroups:$S_4\times D_{12}$$C_3\times Q_8\times S_4$$C_3:C_8\times S_4$$A_4\times Q_8:S_3$$C_6.\GL(2,\mathbb{Z}/4)$$C_6.\GL(2,\mathbb{Z}/4)$$C_{12}.(C_2\times S_4)$$C_6.D_4^2$$\SD_{16}\times S_4$$Q_8:S_3^2$

Other information

Möbius function$1$
Projective image$C_2^4:S_3^2$