Properties

Label 1152.155868.6.c1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.C_2^4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 13 & 4 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 15 & 12 \\ 16 & 15 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 0 & 11 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6:C_8\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $D_6.C_2^7:\GL(3,2)$, of order \(258048\)\(\medspace = 2^{12} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_6:C_8\times D_4$
Normal closure:$C_6:C_8\times S_4$
Core:$C_6:C_8$
Minimal over-subgroups:$C_6:C_8\times D_4$
Maximal under-subgroups:$C_2^3\times C_{12}$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_{12}.C_2^3$$C_2^3\times C_8$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$S_3\times S_4$