Properties

Label 1152.155868.12.t1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}.C_2^3$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 5 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 13 & 4 \\ 8 & 1 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 5 & 2 \\ 16 & 5 \end{array}\right), \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6:C_8\times S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2$
$\operatorname{Aut}(H)$ $S_3\times C_2^4:S_4$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^5:D_6$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_6:C_8\times S_4$
Core:$C_2\times C_{12}$
Minimal over-subgroups:$C_{12}.C_2^4$
Maximal under-subgroups:$C_2^2\times C_{12}$$C_6:C_8$$C_6:C_8$$C_6:C_8$$C_6:C_8$$C_6:C_8$$C_6:C_8$$C_2^2\times C_8$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$0$
Projective image$S_3\times S_4$