Subgroup ($H$) information
| Description: | $C_{12}.\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| Index: | $1$ | 
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Generators: | $a, e^{12}, e^{6}, b^{2}e^{4}, b^{3}, e^{21}, de^{18}, cd, e^{8}$ | 
| Derived length: | $4$ | 
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup.
Ambient group ($G$) information
| Description: | $C_{12}.\GL(2,\mathbb{Z}/4)$ | 
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_1$ | 
| Order: | $1$ | 
| Exponent: | $1$ | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Derived length: | $0$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_2\times C_4\times S_4).C_2^4$ | 
| $\operatorname{Aut}(H)$ | $(C_2\times C_4\times S_4).C_2^4$ | 
| $W$ | $D_4:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $1$ | 
| Projective image | $D_4:S_4$ | 
