Subgroup ($H$) information
| Description: | $C_2\times C_6$ | 
| Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $a, d^{6}, d^{4}$
    
    
    
         | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{24}\times \GL(2,3)$ | 
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) | 
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(32\)\(\medspace = 2^{5} \) | 
| $W$ | $C_2$, of order \(2\) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $6$ | 
| Möbius function | $0$ | 
| Projective image | $C_8\times S_4$ |