Subgroup ($H$) information
| Description: | $C_2^2\times C_6$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(13,15,14), (1,5)(2,6)(3,4)(7,8)(9,12)(10,11), (1,3)(2,7)(4,5)(6,8)(9,10)(11,12), (1,3)(2,8)(4,5)(6,7)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_3\times C_2^5:A_4$ |
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $C_2\times \GL(3,2)$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $48$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $0$ |
| Projective image | $C_2^5:A_4$ |