Subgroup ($H$) information
| Description: | $C_2^{10}.(A_4\times S_4^2):C_4$ |
| Order: | \(28311552\)\(\medspace = 2^{20} \cdot 3^{3} \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$\langle(23,24)(35,36), (19,20)(21,22)(31,32)(33,34), (3,4)(23,24)(27,28)(35,36) \!\cdots\! \rangle$
|
| Derived length: | $4$ |
The subgroup is normal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.
Ambient group ($G$) information
| Description: | $C_2^{12}.S_4^3:C_2$ |
| Order: | \(113246208\)\(\medspace = 2^{22} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | Group of order \(1811939328\)\(\medspace = 2^{26} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | Group of order \(2038431744\)\(\medspace = 2^{23} \cdot 3^{5} \) |
| $\card{W}$ | not computed |
Related subgroups
| Centralizer: | not computed |
| Normalizer: | not computed |
| Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
| Möbius function | not computed |
| Projective image | not computed |