Properties

Label 11250.f.450.b1
Order $ 5^{2} $
Index $ 2 \cdot 3^{2} \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Index: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(5\)
Generators: $b^{3}, e$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5^4:(C_3\times S_3)$
Order: \(11250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Quotient group ($Q$) structure

Description: $C_3\times C_5^2:S_3$
Order: \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_5^2:(C_4\times D_6)$, of order \(1200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_6^2.C_2^4.C_2$
$\operatorname{Aut}(H)$ $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5^3:C_{15}$
Normalizer:$C_5^4:(C_3\times S_3)$
Complements:$C_3\times C_5^2:S_3$
Minimal over-subgroups:$C_5^3$$C_5^3$$C_5^2:C_3$$C_5\times C_{15}$$C_5^2:C_3$$C_5:D_5$
Maximal under-subgroups:$C_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$75$
Projective image$C_5^4:(C_3\times S_3)$