Properties

Label 11200.a.560._.F
Order $ 2^{2} \cdot 5 $
Index $ 2^{4} \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $\left(\begin{array}{rr} 280 & 0 \\ 0 & 280 \end{array}\right), \left(\begin{array}{rr} 153 & 0 \\ 0 & 153 \end{array}\right), \left(\begin{array}{rr} 68 & 0 \\ 0 & 68 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{40}.D_{140}$
Order: \(11200\)\(\medspace = 2^{6} \cdot 5^{2} \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_{140}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Automorphism Group: $C_{70}.(C_2^3\times C_6).C_2^4$
Outer Automorphisms: $C_2^2\wr C_2\times C_{12}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{140}.C_6.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed