Properties

Label 1120.866.28.f1.d1
Order $ 2^{3} \cdot 5 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_4$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{70}, b^{2}, c^{84}, bc^{61}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{140}:D_4$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\operatorname{res}(S)$$C_2^2\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{10}:D_4$
Normal closure:$C_{70}:D_4$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{35}:D_4$$C_{10}:D_4$
Maximal under-subgroups:$C_2\times C_{10}$$D_{10}$$C_5:C_4$$D_4$
Autjugate subgroups:1120.866.28.f1.a11120.866.28.f1.b11120.866.28.f1.c1

Other information

Number of subgroups in this conjugacy class$14$
Möbius function$0$
Projective image$C_2\times D_{140}$