Properties

Label 1120.426.4.b1.a1
Order $ 2^{3} \cdot 5 \cdot 7 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{140}$
Order: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $abc^{61}, c^{70}, c^{84}, b^{2}c^{70}, c^{20}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{28}.D_{20}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{70}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_{70}.(C_2^3\times C_{12})$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(6720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_7:D_{20}$, of order \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{28}.D_{20}$
Minimal over-subgroups:$D_{140}:C_2$$C_{35}:\SD_{16}$$C_{35}:\SD_{16}$
Maximal under-subgroups:$C_{140}$$D_{70}$$D_{28}$$D_{20}$

Other information

Möbius function$2$
Projective image$C_{14}:D_{20}$