Subgroup ($H$) information
Description: | $D_{140}$ |
Order: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Generators: |
$abc^{61}, c^{70}, c^{84}, b^{2}c^{70}, c^{20}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{28}.D_{20}$ |
Order: | \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \) |
Exponent: | \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(2\) |
Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_{70}).C_6.C_2^6$ |
$\operatorname{Aut}(H)$ | $C_{70}.(C_2^3\times C_{12})$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(6720\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_7:D_{20}$, of order \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \) |
Related subgroups
Centralizer: | $C_4$ | |||
Normalizer: | $C_{28}.D_{20}$ | |||
Minimal over-subgroups: | $D_{140}:C_2$ | $C_{35}:\SD_{16}$ | $C_{35}:\SD_{16}$ | |
Maximal under-subgroups: | $C_{140}$ | $D_{70}$ | $D_{28}$ | $D_{20}$ |
Other information
Möbius function | $2$ |
Projective image | $C_{14}:D_{20}$ |