Properties

Label 1120.426.2.a1.a1
Order $ 2^{4} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{140}:C_2$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $ab, c^{20}, c^{35}, c^{70}, b^{2}c^{70}, c^{84}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{28}.D_{20}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{70}).C_6.C_2^6$
$\operatorname{Aut}(H)$ $C_{70}.(C_2^4\times C_{12})$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(13440\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_7:D_{20}$, of order \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{28}.D_{20}$
Minimal over-subgroups:$C_{28}.D_{20}$
Maximal under-subgroups:$C_2\times C_{140}$$D_{140}$$C_{35}:Q_8$$C_{35}:D_4$$C_4\times D_{35}$$D_{28}:C_2$$D_{20}:C_2$

Other information

Möbius function$-1$
Projective image$C_{14}:D_{20}$