Properties

Label 1120.425.80.b1.b1
Order $ 2 \cdot 7 $
Index $ 2^{4} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $b^{20}c^{7}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{70}:Q_{16}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_5:Q_{16}$
Order: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Automorphism Group: $D_8:C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{70}).C_{12}.C_2^6$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_{70}:Q_8$
Normalizer:$C_{70}:Q_{16}$
Complements:$C_5:Q_{16}$ $C_5:Q_{16}$ $C_5:Q_{16}$ $C_5:Q_{16}$
Minimal over-subgroups:$C_{70}$$C_2\times C_{14}$
Maximal under-subgroups:$C_7$$C_2$
Autjugate subgroups:1120.425.80.b1.a1

Other information

Möbius function not computed
Projective image not computed