Properties

Label 1120.425.560.b1.b1
Order $ 2 $
Index $ 2^{4} \cdot 5 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(2\)
Generators: $b^{20}c^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{70}:Q_{16}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{35}:Q_{16}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Automorphism Group: $C_{70}.C_{12}.C_2^4$
Outer Automorphisms: $C_2^2\times C_{12}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_{70}).C_{12}.C_2^6$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$C_{70}:Q_{16}$
Normalizer:$C_{70}:Q_{16}$
Complements:$C_{35}:Q_{16}$ $C_{35}:Q_{16}$ $C_{35}:Q_{16}$ $C_{35}:Q_{16}$
Minimal over-subgroups:$C_{14}$$C_{10}$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1120.425.560.b1.a1

Other information

Möbius function not computed
Projective image not computed