Properties

Label 1119744.nc.12.Q
Order $ 2^{7} \cdot 3^{6} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: not computed
Generators: $\langle(2,12,6)(5,11,14)(9,18,13), (3,7)(10,17)(11,14)(13,18), (6,12)(9,13)(11,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^6.(C_2^7.D_6)$
Order: \(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_2^6.C_6.C_2^5$, of order \(8957952\)\(\medspace = 2^{12} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_3^6.C_2^5.C_2^4$
Normal closure:$C_3^6.(C_2^7.D_6)$
Core:$C_2\times C_3^5.D_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^6.C_2^5:S_4$