Properties

Label 1119744.bp.8.E
Order $ 2^{6} \cdot 3^{7} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $\langle(2,12,4,16,15,13,14,3,11)(5,18,6)(7,9,17)(20,21,22)(23,24)(25,30)(27,29,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^4.(C_6^2:C_4\times S_3)$
Order: \(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ not computed
$W$$(C_3^2\times A_4^2):(C_4\times S_3)$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.(C_6^2:C_4\times S_3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4.(A_4^2:C_4\times D_6)$